Exercise sheet 5

Exercise 1 Let $p \in]0,1[$, q = 1 - p, $X = \mathbb{R}/\mathbb{Z}$ and let $f : X \to X$ be the doubling map $x \mapsto 2x$ on the circle. We identify the set X with the set [0,1[. For every Borel probability measure μ on X, we denote $\mu_1 = T(\mu)$ as the Borel probability measure on X defined by

$$T(\mu)(A) = q\,\mu(f(A\cap[0,\tfrac{1}{2}[)) + p\,\mu(f(A\cap[\tfrac{1}{2},1[))$$

for every Borel set A of X. We denote $\mu_n = T^n(\mu)$.

For all integers k,d such that $0 \le k < 2^d$, we denote by $I_{k,d}$ the interval $I_{k,d} = \left[\frac{k}{2^d}, \frac{k+1}{2^d}\right]$, we write k in base 2:

$$k = \sum_{i=0}^{d-1} a_i 2^i$$

with $a_i = 0$ or $a_i = 1$, and we denote $w_k = \sum_{i=0}^{d-1} a_i$.

- 1) Compute $\mu_1([0,\frac{1}{2}[) \text{ and } \mu_1([\frac{1}{2},1[).$
 - 2) Show that we have $\mu_d(I_{k,d}) = p^{w_k} q^{d-w_k}$.
 - 3) Show that, for $n \geq d$, we have $\mu_n(I_{k,d}) = p^{w_k}q^{d-w_k}$.
 - 4) Show that if a subsequence $(\mu_{n_i})_{i\in\mathbb{N}}$ converges weakly to a Borel probability measure μ_{∞} , then, for all $k<2^d$, we have $\mu_{\infty}(I_{k,d})=p^{w_k}q^{d-w_k}$. (One may first show that $\mu_{\infty}(\{\frac{k}{2^d}\})=0$.)
 - 5) Show that there exists a unique Borel probability measure $\nu = \nu_p$ on X such that, for all k,d with $k<2^d$, we have $\nu(I_{k,d})=p^{w_k}q^{d-w_k}$.
 - 6) Show that, for every Borel probability measure μ , the sequence $(\mu_n)_{n\in\mathbb{N}}$ converges to this probability measure ν .
 - 7) Determine ν when $p = \frac{1}{2}$.
- 1) Show that ν is the unique Borel probability measure on X such that $T(\nu) = \nu$.
 - 2) Show that ν is f-invariant.
 - 3) Show that, for every Borel set A of X, we have $\nu(f^{-d}(A) \cap I_{k,d}) = \nu(A)\nu(I_{k,d})$.
 - 4) Show that f is mixing for ν .
 - 5) For every x in X (identified with [0,1[)), we denote $x=0.b_1b_2b_3...$ the dyadic expansion of x, in other words,

$$x = \sum_{i \in \mathbb{N} \setminus \{0\}} b_i 2^{-i}$$

with $b_i = 0$ or $b_i = 1$. Compute, for ν -almost every x in X, the limit

$$\lim_{n\to\infty}\frac{1}{n}\operatorname{Card}\{i\leq n/b_i=1\}.$$

- 6) Show that, for ν -almost every x, the orbit $\{f^n(x)/n \in \mathbb{N}\}$ is dense in X.
- 7) Show that if $p \neq p'$, then the probability measures ν_p and $\nu_{p'}$ are mutually singular (i.e., there exists a set that has measure zero for one and full measure for the other).