Exercise sheet 4

Exercise 1 Let M be a $N \times N$ matrix with integer coefficients such that $\det M \neq 0$. We suppose that $|\lambda_i| \neq 1$ for all i, where $\lambda_1, \dots, \lambda_N$ are eigenvalues of M. Denote $\mathcal{N}(n, M)$ the number of fixed points of M^n on \mathbb{T}^N , that is $M^n x = x$.

• Show that

$$\mathcal{N}(n, M) = \prod_{j=1}^{N} |\lambda_j^n - 1|.$$

• Compute the value of $\lim_{n\to\infty} \frac{1}{n} \log \mathcal{N}(n, M)$.

Exercise 2 Let $f:[0,1] \to [0,1]$ be the baker's map defined by f(x) = 2x if $x \le 1/2$ and f(x) = 2(1-x) if $x \ge 1/2$. Show that f preserves the Lebesgue measure λ and λ is mixing for f.

Exercise 3 Let X be a compact metric space, f a continuous map and μ a f-invariant Borel probability measure on X with support equal to X. If μ is mixing for f. Show that f is topogical mixing, that is for any two open sets U, V in X, there exists n_0 such that for all $n \ge n_0$, we have $f^n(U) \cap V \ne \emptyset$.

Exercise 4 Let (X, \mathcal{B}, μ) be probability space and f a measurable map preserving μ . Suppose f is mixing for μ .

- Show that the map $f \times f : X \times X \to X \times X$ is mixing for the product measure $\mu \times \mu$.
- Show that f is weakly mixing.

Exercise 5 Show that a circle rotation R_{α} on \mathbb{R}/\mathbb{Z} is not mixing. Show that $R_{\alpha} \times R_{\alpha}$ is not ergodic.

Exercise 6 Let (X, \mathcal{A}, μ) be a probability space and $f: X \to X$ a measurable measure-preserving map. For $k \in \mathbb{N} \setminus \{0, 1\}$, we say that f is mixing of order k if for all measurable subsets A_1, \ldots, A_k of X, and all sequences τ_1, \ldots, τ_k from \mathbb{N} to \mathbb{N} such that $\lim_{n\to\infty} \tau_{i+1}(n) - \tau_i(n) = +\infty$ for $i = 1, \ldots, k-1$, we have

$$\mu\left(\bigcap_{i=1}^k f^{-\tau_i(n)}(A_i)\right) \xrightarrow[n\to\infty]{} \prod_{i=1}^k \mu(A_i).$$

- 1. Show that a symbolic dynamical system is mixing of order k for all $k \in \mathbb{N} \setminus \{0,1\}$.
- 2. Let $N \in \mathbb{N} \setminus \{0,1\}$. Show that the map $f_N : \theta \mapsto N\theta$ on the circle \mathbb{R}/\mathbb{Z} is mixing of order k, for all $k \in \mathbb{N} \setminus \{0,1\}$, with respect to the Haar measure.

3. Let $N \in \mathbb{N} \setminus \{0\}$ and let M be an invertible $N \times N$ matrix with integer entries, having no eigenvalue which is a root of unity. Show that the map $f_M : \mathbf{x} \mod \mathbb{Z}^N \mapsto M\mathbf{x} \mod \mathbb{Z}^N$ on the torus $\mathbb{R}^N/\mathbb{Z}^N$ is mixing of order k, for all $k \in \mathbb{N} \setminus \{0,1\}$, with respect to the Haar measure.