Exercise sheet 3

Exercise 1 Let f be a unique ergodic transformation on a compact metric space X and μ is the unique f-invariant measure on X with support μ .

- Prove that any f-invariant non empty closed set of X contains S.
- If f is bijective, do we always have the equality X = S?

Exercise 2 Show the map $f(x) = (x_1 + \alpha, x_1 + x_2, \dots, x_{n-1} + x_n)$ on \mathbb{T}^n preserves the Lebesque measure.

Exercise 3 On the torus \mathbb{T}^2 , let $f(x,y)=(x+\alpha,y+\psi(x))$ and $f_0(x,y)=(x+\alpha,y)$ with ψ continuous. Let h(x,y)=(x,u(x)+y). Suppose u satisfies the equation

$$\psi(x) = u(x + \alpha) - u(x).$$

Show that if u is continuous (measurable), then h is a continuous (measurable) conjugate between f and f_0 .

Exercise 4 Let H be a Hilbert space and $U: H \to H$ a unitary transformation. Let H^U be the closed subspace $\{h \in H \mid U(h) = h\}$ and p^U the orthogonal projection on H^U . We want to prove that

$$\forall h \in H, \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} U^k(h) = p^U(h).$$
 (1)

- Show (1) for h in H^U .
- Show (1) for $h = U(h_0) h_0$ for h_0 in H.
- Show the subspace (U Id)H is dense in the orthogonal of H^U .
- Conclude.