Exercises Sheet 1

Exercise 1. 1)Let X = [0,1). Show that the doubling map $x \to 2x \pmod{1}$ on X is measure-preserving with respect to the Lebesgue measure on X.

2)Let $X = [0,1), \ g(x) = 2x \ (\text{mod}1), \ \mu = Leb \ and \ let \ Y = \prod_{n=1}^{\infty} \{0,1\}, \ h: (x_n)_{n \geq 1} \to (x_{n+1})_{n \geq 1}, \ \nu = (\frac{1}{2}(\delta_0 + \delta_1))^{\otimes \mathbb{N}}$. Show that they are isomorphic.

Exercise 2. Show the cylinder sets C_{m,a_0,\cdots,a_n} form a Bool semialgebra \mathcal{C} and generate the Borel σ -algebra on $\Lambda^{\mathbb{E}}$.

Exercise 3. Let X be compact metric space and f a continuous map. A point x in X is called quasi-periodic if for all neighbor V of x, there exists an integer sequence n_k tends to infinity, such that $f^{n_k}(x) \in V$ and $n_{k+1} - n_k$ "the return time to V" is bounded.

- Show any point in a closed minimal set Y of X is quasi-periodic.
- ullet Show X contains quasi-periodic points.
- Show the inverse: if x is quasi-periodic then the orbit closure $\overline{\{f^n(x), n \in \mathbb{N}\}}$ is minimal.

Exercise 4. Consider symbolic system $\Lambda^{\mathbb{Z}}$ and $\Lambda^{\mathbb{N}}$ with $\Lambda = \{0, 1\}$.

- Construct a point ω in $\Lambda^{\mathbb{Z}}$ which is recurrent for σ but not for σ^{-1} .
- ullet Construct a point ω which is quasi-periodic but not periodic
- Construct a point ω which is recurrent but not quasi-periodic.

Exercise 5. Construct a part A of \mathbb{N} such that neither A nor A^c contains an infinite arithmetic sequence.